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The linear approximation equations (6.1) are in this case 

1/1 lk + 11 = u PC], Y, [k + 11 = Y1 M (7.3) 
The first equation of system (6.2) may be written 

B (z)(+% + u) = L', B (2) = (Q + I)%,* + 1 (7.4) 
and the second becomes an identity. Under the control 0=0(y)= =y,+ by,, a= i, bz -0.25 
system (7.3) is asymptotically stable in the large. By (7.4), the isomorphism yields a 
control 

of system (7.1), under which, by Corollary 6.1, the trivial solution is asymptotically stable 
in the large. The same control is also obtainable using the following formula form /4/: 

II = ~mOh-'&J (h&s) 
* 
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DYNAMIC MODELLING OF UNKNOWN PERTURBATIONS 
IN PARABOLIC VARIATIONAL INEQUALITIES* 

V.I. MAKSIMOV 

The problems involved in the dynamic determination of the load acting on 
a membrane rigidly fixed on a horizontal frame are investigated, and the 
thermal flux in a thermostat is determined. These problems are treated 
as special cases of a more general problem: dynamic modelling of unknown 
characteristics in parabolic variational inequalities. The problem is 
solved by constructing an algorithm, stable to information noise and 
computing errors, based on methods of positional control theory /l, 2/. 
This algorithm may be regarded as a modification of an algorithm proposed 
in /3/ for control systems described by ordinary differential equations. 
A model problem is solved. The research reported, here relies on /3, 4/ 
and is a sequel to /5/. 

1. In /6/ (Vol.1, p.198) a numerical method of determining the deflection y (z.,t) of a 
membrane rigidly fixed on a horizontal frame with constant tension F , subject to a given load 

g (2, t) is proposed. 
We shall consider the inverse problem: to determine the load g(x, t) given the deflection 

Y (x3 2). Let B be the plane region bounded by the frame. Put 

u(x,t)=g(x,t)/F, K={u(.)~u(x)EH,~, u(x)<0 in Q) 

K+ = {u (-)I v (.) cz L, (It,, 61; If,‘), au/at E L, ([to, *I; H-l), 

7J (&J = %) 

Ho’ WI and H-‘(Q) are Sobolev spaces. The deflection process for a membrane subject to a 
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load s(s. 1) is described by the following inequality, where 1 is the Laplace operator: 

$ (By (P, t)/Jl -- Ay(3.. l) - 14 (r, f), v(r) - Y(x, 1))dz > 0, y(r)= K 

for a.e. t Z It,,,61 and all u(.)c;K, ye K. 
Let us assume that the tension F is given, but the load g (z, t) acting during the time 

interval It,.61 is unknown. At time Ti G [to.+], ai rm t, _I- ia, 6 > 0 the deflection y (X,Ti) is 
measured to some accuracy, i.e., one has a function $(z,$~) approximating y (x. Ti). The 
problem is to devise a dynamic algorithm, operating in real time, to calculate g(z,t). This 
is a meaningful formulation of the problem of the dynamic determination of the load. Measure- 
ment of the deflection at every point SE Q may involve technical difficulties. In that 
case it is natural to propose the problem of calculating g, given the deflections y (.r. Ti) 
measured at discrete points r == 2-j c 0. 

Let us agree on the following notation: H, V and U are real Hilbert spaces with norms 
I . I? II . II and (1 /IIJ, VT_ H, V is continuously and densely embedded in H, (.? .) is the scalar 
product in H, (., .)VXY* is the duality between V and V*; L(U,X) is the Banach space of 
continuous linear operators from U to X; W ‘9 ’ ([to, 61; H), C (It,, 61; H) and L, ([to, 01; H) are 
the standard spaces; WI' ((to, 61; H), (I& ((to, 81; H)) is the space of functions I/(.): (t,,,61-+ H 
such that y(.): It,, -+ s,fi]+ H is an element of W’s2 (ito + E, 61; H) (L, (It, + E, 61; H)) for every 
EE(O,@ - t,); A is a partition of the interval It,,+], of mesh 6 = S(3) (i.e., the setof 
points {.Ci}a i E [O: ml, m = n (A), t, = r,, < TV < <.T”, = 6, -ci = zi-l i_ 6); U, is the set of 
admissible controls; li == RU{i_ca}; x is the closure of A CH, A,- -2 = {z- y IzEAl, YE 
A,}; D W and R(B) are the domain and range of an operator 13; & is the subdifferen- 
tial of cp; a(pb is the Iosida operator /7/ of the mapping z+aq(X) corresponding to a 
parameter h > 0; hp” (y) = (2 E H 1 1 z j :~ inf 1 z j, z E 8'p (y)); uo,h (.) is' the function u (0, t 5 
la, bl. Throughout, integrals are understood in Bochner's sense and derivativesinthe general- 
ized sense. In particular, it follows from the properties of Iosida operators (see, e.g., 
/7/) that a~,. (X)-F a@ (2) as h-to;-. 

2. Consider the dynamic system 2 described by the parabolic variational inequality: 

(y' (t) - fi (1, Y (0)~ (t) - f (t)> Y (t) - 4 i- (AY (t), y (t)- (2.1) 
&XI.* -t CP (y (t)) - 'p (2) <l 0 for a.e. t E (to, a) and all 

ZEV 

Here I(.)E L,(Lt,,61; H) is a given function, A : V-t-V* a continuous, symmetric linear 
operator satisfying the coercivity condition for some o>o and a : 

(AZ, z)vxv. + a 1 z I2 > o 1) z II2 for all z E V 

rp: v+fi is a convex, lower semicontinuous eigenfunction. 
The family of operators B(t, y)E L(U,H), depending on the parameters tE [t,,81 and 

YEH, is such that for any step function y(.) with finitely many jumps there exists a 
semicontinuous operator B,: L,([t,,+l; a)+ L, ([to,*]; H) 

(t) = B (t, Y @))u (G. 

admitting the representation {B,u(.)} 

A function y(.): [t,,8]+ H is called a strong solution of (2.1) for control. u (.) E 
L,(It,,fil; U) andinitialstate yo~&=D(cp) n V, if for a.e. tElto,61 lt satisfies 

(2.1) , Y (.) E W'~' (It,, 61; H) n C (It,, 91; V), Y (to) = ~0, A y (*) E L, ([t,,+31; H) and 

Y' (t) = (--Ay (t) - acp (y (t)) + B (t, y (t))u (t) + f (t))” for a-e. t E It,, al (2.2) 
A function y(.): Lt,, z11-+ H, y(tJ = y,, is a strong solution of (2.1) for m (.) E L, #,,fil; U) 
and ~~~~,=D(cp)rlV\ D(v) f/l V, if y (.) E WI, 2 ([t,, 61: H) n C (It,, ztl; H) and it satisfies 
(2.11, (2.2) for a.e. tE [to,*1 

We shall consider two cases: 1) y,E El, 2) y, ~2 E,. It is assumed that for an 
initial state YO and control up(.)'=: L,([t,,fil; U) acting on '2: there exists a% unique strong 
solution Y, (.) = Y (*; Yo, ug). This is the case, for example, when B (t,Y)' B, ‘p: H-+R is 
a lower semicontinuous function and there exists a constant C>O, independent of h>O, 
such that for all elements y E D(AH)= {YE V 1 AyE If} and all operators 3% (Y) 

(AY, %+. (Y)) > --c (1 + I @l. (y)l)(f + I Y I), h > 0 

The problem discussed in this paper is as follows. We have a system Z subject to an 
unknown control up(.) G UO C L,(It,, Zrl; U), which generates the actual motion yP(.) - a 
strong solution of (2.1). The motion yP(.) itself andthepoint y, are also unknown. However, 
information is available concerning the realization Y, (.) - signals $'ri_i,zi (.) received 

at times Ti, i > 1, which are step functions with a finite number of jumps, 
These signals satisfy one of the following conditions: 
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1) for all i>l 

(2.3) 

(2.4) 

2) For all i> 1, only inequalities (2.3) hold, but the quantities I 41, (4 - 4 @I I 
may take arbitrary values. Moreover, at a time t = t, we know U, and the element II, (to) E H, 

I * (to) - Yo I < 5 we also know to which of the sets El or E, the element y, belongs. 
It is required 
a) to construct a model TA described by the control system 

2’ (t) = fb (tv ‘$t,, 1 (.)* u (t)), to < t < 6 
2 Z H, 2 (to) = II, (to), fb: t X $10, t (.) X u * H 

(2.5) 

b) to construct the following mapping , dependent on the information error E> 0, auxiliary 
parameter v and partition A: 

u e,Y,A: tTir $,,ri('), %,,T~('), -'&(h %+ll;u) 

c) to devise a rule for the selection of E,V and A such that for any signal I# the 
quantity 

will be sufficiently small provided 

where U,C&([&, *l;W is the set of all controls generating yP (+), zb (e) = z (a;$ (*), U" (*)) the 
trajectory of the modelforcontrol u = ue(.). 

A function z(e) = ~(a;$(.), u"(.)) is a trajectory of ZA if it iS Strongly absolutely 
continuous and satisfies system (2.5) for a.e. tE[t,,61. 

3. An algorithm will now be presented for solving the above problem with U0 = L,(11,,61; 

m. As the model 2~ we take system (2.5) with right-hand side 

fb (6 +&.r (.), U) = (3.1) 

1 

0 for a.e. tE[t,,zjl 
+(t-Q+B(t-6,1#(t-6))u(t)for a.e. t>Tj 

Here h>O,i=l for y,E&, j=2 fory,EE,,A,y=ay,cp*(y)= q(y)4 1/2 ly j2+Va(Ay, ~)VXV. if the 
signals I# satisfy inequality (2.3), A,y = -Ay, ‘p* (y) = q(y) if 11, satisfies inequalities 
(2.3) and (2.4)) rX (t) = A,$ (t) - hp” (I# (t)) + f (t), if 'p* = 'p and the function 5 --t drp0 (r) 
satisfies a Lipschits condition, rh 0) = A& (t)- @A* (21, (t)) + f(t) otherwise. 

We define the mapping U,,,,A by the rule 

calculating the functions u:,,+,(.) at times ri by the formulae 

u*(t)= 
0% if xi<0 or ai,<vW. 

x&hi,g(t - 6) otherwise 

hw (.) is the element ofthespace L,([T~_~,T~]; U), uniquely defined by the condition: for any 

a (') CZ Lz (Iri-1, Til; u) 

; (k~(Ehu(ENodE 
zci-I 
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z'(,) is the trajectory of the model with initial 
control 11 1 U* (1). 

We shall assume that the following conditions 
lo. For any bounded set I([: H there exists 

II B (t, Y) - ‘!I tt. z) IIL(L.I,) :._ 

state z" (I,,) $ (I,,) corresponding to the 

are satisfied. 
a number I, I,(K) such that 

UY-zl, Y,ZEK 

20. 
30 

t--f B (k Y,, (9) E L, (It,, 61: I, (D, Hi)). 
. If Y, EE,, then @*so (Y,, (t)) E L, &,@I; H). If Yo E E,, then @*vO (yP (t)) E L, ((to, +I; II). 

4O. There exists a unique element of minimum norm IL* (.)EL,([t,,61; U) with the follow- 
ing property: for a.e. t ?[t,,61r 

Y,,' (L) - f (1) - .A*Y,, (L) + @*I0 (Yi, (t)) = {BUpU* (.)I (t) 

Consider an arbitrary monotone increasing function F(v), D(F) = IO, +w), F(O)- 0. 

Theorem 1. For any %l> 0 we can find v0 and S,> 0 such that, foranynumber v E (0,~") 
and partition A of the interval [t,.61 of mesh 6,~ 6,, and for any signal II, with the above 
properties, 

p (U" (a). V,) G U" (3.3) 
provided only that 

E < min (~8. l/Zvh} (3.6) 

and for y, z E, the number 6 is so small that 

(3.7) 

Theorem 1 can be proved with the help of the following lemma. 

Lemma 1. For any numbers Y E (O,@ - t,)/3), 6E(O, ~14) and partition A of the interval 
It,, 61 of mesh S(A)-< 8, the following estimates hold: 

%+I 

i I/ ue (t) llo'dt < y I\ U*(t)llLJadt + ks"2j z6(Ti)- +(51-])1’ 

I”+ (t) - Y,, (t)l iiil(v, 6), i E 11 : m - 11, t E it,, 61 

if LL~(.) is defined by (3.4), and h and e are such that inequalities (3.5) and (3.6) hold. 
. For y,E El we have in Lemma 1 y= k,(v + 6 +v*(6)), k and k, are constants expressible 

in explicit form and 

‘i 

v*(6)= max 
is I! B (5, yPW(E)) ll?~.~~d%li E 11 : ml) 
Ti-1 

In the case YO E E,, on the other hand, Y (v* 6) is a non-linear function with the property: 

y(v,V-+O as v-to+, 6+0-k and conditions (3.5)-(3.7) are satisfied. 

Theorem 2. Let the mapping x--t a@(x) satisfy a Lipschitz condition. Then the 
statement of Theorem 1 is true if u"(.) is defined by (3.4), s<8v, 'p* = 'p and if y,E E, 
then condition (3.7) is satisfied. 

Under the assumptions of Theorem 2, if YllE El, the following estimates, which indicate 
the performance of the algorithm, hold: 

5 1. (1 U= (t) \jua dt < tf II u* (t) IIt? dt i- K, (6 + E + v) 

where K, and K, are constants that can be expressed in explicit form. 
Put 
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Q = {Y (*I E L, (l&l, @I; H) I Y (1) E O’p* (yp (t)) for a.e. t E I&I, +I> 

Conditions 3O, 4O are satisfied if z+&+~(s) is a single-valued mapping. They are also 
satisfied if Qc R(BgY) and either d,Y, (t)EL, (It,, 61; H) or q(x) is the characteristic 

function of a convex, bounded, closed set. 

4. Let up (.) be an element of a convex and closed set P = {u(.)E L,([t,, @I; U) 1 u(t)= 
P (t) C U for a.e. t E [t,, Sl}, which is unknown at time to . At every time riE A, i>l, 
the restriction of the set P to the interval Iri-1, .til becomes known, call it Pi . Put 
u. = P, leave the model ZA as before, and define the strategy 
{Qi,~i+l (.)I u (t) E P (t - 6) 

UE,,,,b {ri, $t.,~~(.), &T~(.)}+ 
for a.e. as 

follows: 
tE [ti, rj+,l} by rule (3.2), calculating u:~,~~+~ (.) 

li (u:;,~~+, (.))= min Ui ~~~~~~~~~ (.)) Iuyi.ri+l (.)E PiI (4.1) 

li C”Ti,Ts+l c,,=(%> ‘s n(5,~(SI).(Ei-s)dS)+r7’Fil II~(E)llL!*dE 

=i-l ii 

Theorem 3. Under the assumptions of Theorem 2, assume that conditions l"-40 are also 
satisfied, with the proviso that U*(O) in condition 4O is the unique element of minimum norm 
in P. Then there exist monotone increasing functions 6(v) and & (Y, 6), 6 (0) = E (0,O) = 0, 
D (6 (.)) = 10, foe), D (E (., .))= IO, SW) x IO, +co), such that for any % > 0, y E @,Y,), 6 = S (A)E 
(0,6(v)), EE (O,E(V,~)) and any signal I# with the properties described in Sect.2, inequality 
(3.3) is true if v0 = vO(a,) is sufficiently small, and the strategy li,,,.,,$ is defined in 
accordance with (3.2), (4.1). 

A similar theorem can be proved for the case in which I',, = P and the assumptions of 
Theorem 1 are satisfied. 

By known results of the theory of accretive functions /7/, for any 
there exists a,,>0 

v>O and S>O 
such that inequality (3.5) is true for all h~(O,h,). 

Let us assume that q(y) = Ih.(Y) is the characteristic function of a convex closed set 
KC FI. Inequality (2.1) is rewritten 

(y' (t) - B (t, y (1))U (t) - f (& Y (t) - z) i- (AY (0, Y (L)- 
z)vxrJ* ,(O for a.e. tE(t,,a)and all ZE K 

If the signals $ possess properties (2.3), (2.4), we can put rh(d)= --A$(t)+f(t) in 
(3.1). Otherwise, 

rh (t) = ay - 8%. (9 (0) + f (t), 4, (Y): H -+ R 

Vz(Ay, Y)VW -t 'laaI~lzP 
m(Y)= +30 

1 

YE v 

YEH\V 

5. The control process occurring in a thermostat regulated by the temperature inaregion 
0~ R3 /8/, is formalized as a variational inequality (2.1), in which 51 is a bounded 
domain with fairly smooth boundary (e.g., of class C,), y(s,t) is the temperature of the body 
occupying the region 9, ~(2, t) is the controllable thermal flux and H = l&(51), V = H,‘(Q), B(t, 
y)u = u, 

A : H,‘(Cl)-+H-‘(52): (Ay, +rxv*= 

i. j=l il 

a, (.I E L (W, aij (. 1 

w>O 

for all FERN and a.e. XEQ 

[a,@-fi6,), --M<r<% 

‘p(y) = g(y(s))dx, %(r)=B(r)= 0, r E [%. $1 
! I ag(r -f&J, %<r< + 00 

al, a,, f4,6, are constants. 
The problem of dynamically determiningthe thermal flux u(z, t) given the temperature of 

the body measured at times ri'is solved using the algorithms proposed in Sects.3 and 4 above. 
If the approximate value of the temperature Y(x,t), say +(z,t), satisfies (2.3), (2.4), then 
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the model CA is described by one of the systems 

Yr (2, 1) = --A& (5, t - 6) - p (II) (x, t - 6)) -I- U (2, t) 

Y,' (G t) = ---A& (Z, t - 6) - h-‘ {?I, (T, t - 6) - J,.ll, (9, t- 
6)) + u (3, t) 

Here J&$(r) = w(z)E L%(e) is such that 

If q&t) satisfies only inequalities (2.3), then 2~ has the form 

Yt' (J, t) = --h-' (11, (x, t - 6) - Jk (II, (5, t - 6))) + u (2, t) 

Jo+ (4 = w (5) .Z H,’ (a) n ~2 (Qt is a solution of the equation 

w (2) = 9 (x) - h {A,10 (x) + p (w(x))) a.e. on 52 

6. Let V, U and H be Sobolev spaces on 8, B(t,y)u= u, and A the Laplace operator. In a 
computer solution of the control-modelling problem, one naturally replaces Q by a suitable 
grid wh= (?jij= t,..., N) t/9/, p-69) with step size h and assumes that the values of Ip(~~ai) 
are measured at the grid-points ~1. Eq.(2.5) must then be replaced by a difference equation 

8 (zjT r++*) = :' (z~,T,) _t 4 {rII. (z~,T~..~) + u (x~,TJ), i > 1 

and the function 21 (.) = u* Ti,y+I i.) by a difference function u = u* (z,, TV) = 0 if x,; -< 0 or Rsi % 

dir, u = u* (~1. zi) = ~~1 Q,i-‘h~,~ (Zj) otherwise. Here “Ii3 ?l ' (Xj, Ti-1)r Xii are difference analogues of n:, 

Th (Tr_l), %I, hi,* (Zj) = Zb (Zjq Ti)- Ip (s13Ti-l). The values of A$(ri) must then also be measured, whenever 
possible, at the grid-points rj, If & (Ti) cannot be measured at ~1, they may be approximated 
by suitable difference relations, e.g., by the expression ,?&I$ /9/ when n = (a, b)c R1. 

The process of calculating the load g(.z,t) applied to a membrane was modelled on the 
computer, with 

!' = 1, z =- (r,, SJ E R2, Q = (0, 1) x (0, 1) 
t, = 0. 6 = 1, v = lo-’ 

a = V, i- V4 sin 2xt, y, (z) = yP (z, 0) 

The phase trajectory of the model ;*(.) was calculated by Euler's method with step size 
6 = 0.002. The region Q was divided into squares with side 0.02 and replaced by a uniform grid 
"h of step size h = 0.02 /9/. Formation of the control u"(~,z,) used the values of 1v (+fi zil 
and A*(z,,T~) at the grid-points of ;;;h only. 

The figure shows sections by hyperplanes f,,i'e.I, of the load g(r,t)= LC*(.G t) (the 
solid curves 1, 2, 3) and sections found at 9 (z, ~1) = y, (5, Ti) + 10"(~,2 + sa2), using the algorithm 
(3.1), (3.21, (3.4), of the load ue(;, t) (the dashed curves 1, 2, 3). We had P(u<(.), u,)=o.221 
and the hyperplane were defined as follows: 

U f, = {(3, t)l X1 = 0.6, i = 0.4) 
:! )‘s = ((Z, t)l 51 = 0.08, 2% = 0.8) 

rs = {(Z, 1)/ 3* = 0.6, t = 0.4) 

Remark. Referring to the problem of the deflection of a membrane, 
let us explain the mechanical meaning of inequalities (2.41 and the 
conditions y,,~ El,y,~E,. Since every difference function * kjv Ti-1) 
may be defined attheother points of 61 so as to obtain a function 

11, = ‘#h 6% %-dr inequalities (2.41 imply restrictions on the smoothness 
of '$h and the quality of the approximation of flP by this function. 

-4 
For example, the function $%(t,~&, with +'(Z, f) = 9.h (Z,?i,), t E ka,Tjl , 
must have a second derivative with respect to the space variable, 
which is a good approximation to Ayp(r,t) on the average in theinterval 
CTi_*l 7il, Inequalities (2.4) may be treated as conditions on the 
frequency at which the deflection is measured. This is particularly 
evident if the Laplace operator is approximated by a difference 
operator, such as Lhq'l and the left-hand side of (2.4) is replaced 

by a suitable difference expression. 
The condition ~,EE, means that the role of the function YO(~) describing the initial 
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deflection is played by a function with certain "smoothness" properties (~~(2) E H,'(Q)). The 
condition yO= E, corresponds to the case in which the deflection at time lo is described 
by a function in ~~(52). 
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MULTILAYER FLOWS OF AN INCOMPRESSIBLE LIQUID OVER AN 
UNEVEN BOTTOM UNDER THE ACTION OF SURFACE PRESSURE* 

K.A. BEZHANOV 

The plane problem of the shear flow of an ideal heavy incompressible 
stratified liquid of finite depth over an uneven bottom is studied. The 
liquid has a finite number of layers and the stratification at their 
boundaries is discontinuous. An exact non-linear integrodifferential 
equation is obtained describing the internal and surface waves generated 
by the irregularities of the bottom , and by surface pressure. The basic 
properties of the spectrum of the linear problem proved in /l/, which 
generalize the results of /2, 3/, are formulated. A solution of the linear 
problem is obtained in the form of a Fourier series in terms of the eigen- 
functions corresponding to the integral Fredholm equation or of the 
equivalent boundary value problem. The case of resonant reinforcement 
of the corresponding mode is discussed for the mean stream velocities 
close to, but smaller than the critical velocity. A non-linear problem 
of a streamlined flow with the formation of an internal two-soliton wave 
is considered for the case in which the mean stream velocities are close 
to and larger than the critical velocity. 

1. Derivation of the basic equations. We consider the plane, steady-state flow of 
an ideal heavy incompressible stratified liquid above an uneven bottom, in the case when a 
known pressure is applied to the free surface of the liquid. The I axis is directed along 
the horizontal level of the bottom , and the y axis is directed vertically upwards. A one- 
dimensional shear flow is specified as 5+-00, with stable discontinuous stratification. 
When a one-dimensional stratified flow is acted upon by a known surface pressure p. (5) and 
by the irregularities of the bottom y,(s), it generates a two-dimensional stratified flow, 
the functions pO(x) and ye(r) are assumed to be continuous and finite, andthesegment I--t,, 

%I is their common carrier. The liquid consists of II layers, the density and tangential 
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